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SUMMARY 


A method is presented for determining shock envelopes and pressure dis

tributions for a variety of blunt bodies at zero angle of attack. Correlation 

functions obtained from exact solutions are used to relate the shock standoff 

distance, at the stagnation and sonic points, to the body geometry. These 

functions were obtained for a perfect gas but may be applied for real gases in 

equilibrium flows. The method is restricted to cases where the bow shock is 

detached from the body and the flow over the forward face is subsonic. Results 

given by the method are shown to be in good agreement with experimental values. 


INTRODUCTION 


A problem currently receiving wide attention is that of predicting the 

shock envelope and pressure distribution over the forward face of axisymmetric 

blunt bodies at atmospheric entry. 


Exact solutions have been presented for spheres, ellipsoids, and parab

oloids by Van Dyke (ref. 1). In this work and that of subsequent investiga

tors most exact solutions are for the indirect problem; a shock shape is pre

scribed and the resultant body shape is sought. Many trial solutions are 

usually necessary to find a body shape that approximates the one for which a 

solution is wanted. 


An approximate "direct" method to define the shock trace at zero angle 

of attack is included in the analysis of reference 2. This method is 

restricted to spherically blunted bodies with sharp corners. Extensions of 

this method which permit the calculation of the entire forward shock envelope 

and the pressure distribution for these bodies have been published (refs. 3 

and 4). The exact and approximate solutions of these references are applicable 

to a relatively narrow choice in body shape. 


This investigation was undertaken to develop methods for predicting the 

shock envelopes and pressure distributions over the forward face of a wide 

variety of body shapes at zero angle of attack. Particular attention is 

given to ellipsoids (ranging from a sphere to a flat disk), spherical or 
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flat-faced bodies with an arbitrary degree of corner rounding, and spherically 

blunted, large-apex-angle cones. The method developed is restricted to those 

cases in which the bow shock is detached from the body and the flow over the 

forward face of the body is subsonic. 


NOTATION 

A coefficient in transformed pressure distribution function 

a semiminor axis of ellipsoid 

Bb body bluntness parameter, 9 = 2 ~ ~ x b- B b g  (ref. 1) 

BS shock bluntness parameter, y' = 2Rsxs - B s G  (ref. 1) 

b semimajor axis of ellipsoid 


C coefficient in transformed pressure distribution function 


G shock correlation function (see eqs. (1)) 


M free-stream Mach number 


m'st slope of transformed pressure distribution function at stagnation 

point 


m,: slope of transformed pressure distribution function at sonic point 


P pressure on body 


Pst pressure at stagnation point on body 


p* pressure at sonic point on body 

Rb body surface radius on axis of symmetry 


Rb* body surface radius at sonic point of an ellipsoid 


'b@ body surface radius at point on surface inclined @ degrees with 
respect to a plane normal to free-stream direction 

RS shock radius on axis of symmetry 

r 
C 

corner radius of body 

rm semidiameter of body 


S distance along body surface from stagnation point 
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y* 


Z 

Z 

Y 


A 


E 


11 


e 

Q*O 

V 


distance along body surface from stagnation point to sonic point on 

body 


independent variable for transformed pressure distribution function 


tangent point of transformed pressure distribution functions 


free-stream velocity 


velocity at sonic point on body 


streamwise distance from apex of body to sonic point on body 


streamwise distance from apex of shock to point on shock at distance 

y* from axis of symmetry 


normal distance from axis of symmetry 


normal distance from axis of symmetry to sonic point on body 


coordinate axis of transformed pressure distribution function 


dependent variable in transformed pressure distribution function 


specific heat ratio 


shock standoff distance from body in free-stream direction 


shock standoff distance from body on axis of symmetry in free-stream 

direction 


shock standoff distance from sonic point on body in free-stream 

direction 


inclination on forward body surface at the tangent point with corner 

radius, rc 


normal distance from body surface (sketch (g)) 


shock surface inclination at distance, y, from axis of syrmnetry with 

respect to plane normal to free-stream direction 


shock surface inclination at a point opposite the sonic point on the 

body with respect to a plane normal to the free-stream direction 


shock surface inclination, at a point opposite the sonic corner of a 

flat disk, with respect to a plane normal to the free-stream 

direction 


pressure correlation function 
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p1 density of free stream 

p2 density of stream behind normal shock 

pst density of gas at stagnation point 

(5 shock layer thickness normal to body (sketch (g)) 

(D body surface inclination with respect to plane normal to free-stream 
direction 


body surface inclination at sonic point with respect to plane normal 

@* 

to free-stream direction 


O*l. body surface inclination of a sphere at the sonic point with respect 

to a plane normal to the free-stream direction 


ANALYSIS 


The analysis will be developed in three parts. First, general relation

ships and assumptions involving body and shock geometry are introduced. Next, 

application of the shock-body relationships to a method for calculating the 

shock envelopes of a variety of blunt bodies is demonstrated. The calculation 

involved is simplified by the use of a nomograph. Finally, a general method 

for estimating the pressure distribution for the bodies considered is 

presented. 


General Shock-Body Relationships 


Shock shape.- Reference 1 defined shock traces as conic sections of
~-
suitable bluntness B, (see Notation) to obtain the shock solution for a 

range of conic section blunt bodies. In the present investigation, it was 

assumed that conic sections can closely approximate the shock trace for a 

larger variety of blunt bodies than were considered in reference 1. 


Stagnation-point correlation.- A relationship involving shock standoff 

__I_. ___ -___I 

distance, shock shape, and normal-shock density ratio was pointed out in 
reference 5 and used in reference 2. A simplified form of this correlation, 

as used in the present investigation, is 


G = (1 + 2)2= (1 + G) n,Rsn, 
RS 


RS (3) 
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G is a function of the free-stream gas and Mach number and was evaluated by
substituting values for Ao/Rs and Ao/Rb from reference 1 into equation (la). 
Figure 1 shows G as a function of the reciprocal normal-shock density ratio 
p,/p, (rather than Mach number) for two values of the gas specific heat ratio, 
Y* 


Sonic point shock standoff correlation.- The theoretical results of 
______
reference 1 and numerous experimental results for a variety of body shapes 

indicate that the ratio, A,/y,, is primarily a function of the normal-shock 

density ratio and secondarily of y pertinent to the free-stream gas in ques

tion. Sketch (a) shows A*, the shock thickness measured in the free-stream 

direction from the sonic point on the body at y*, the vertical distance from 

the axis of symnetry. 


A correlation of both theoretical and experimental values of A,/y, with 
the normal-shock density ratio, p1/p2, is shown in figure 2. The dashed 
extension of the y = 1.4 line is physically unreal, but it is a useful inter-

between 1.0 and 1.4.
polation guide for A,/y, at values of y 

P 

i 
/
/ 

20 

Figure 1.- The 
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G function. 


Sonic point inclination.- A 
solution for the infinite shock-
density ratio was used to determine 
the inclination of the sonic point 
on conic-section bodies. The 
results were then applied to finite 
shock-density ratios and to bodies 
of other shapes. 

The angle, O,, associated with 
the sonic point is the angle between 
a normal to the free-stream direc
tion and a line tangent to the body 
at the sonic point (sketch (a)). 
This angle was determined with the 
Busemann solution for an infinite 
shock-density ratio as a function 
of the body bluntness parameter, 

Sketch (a) 
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Bb (see Notation). Details Of the solution are presented in appendix A. The 

essential result is 


. -1 1 
L 

Body shape Symbol References 

Sphericol (round cornered) 0 4 

cornered) b Unpublished In the present application of 
Dlsk (round cornered ) D 6 equation ( 2 ) ,  the gas was assumed 
Dlsk (sharp cornered) 0 4 perfect. Since the theory requires 
Cone ( 6 = 7 0 ” )  A Unpublished an infinite shock-density ratio, the 

e l value p*/pSt = 0.607, appropriate 
Porob o b  d m I 4 to a gas with y = 1.0, was used. 
Experiment -open symbols 

Theory - solid symbols 

.7 

.6 

A *- ’= 1.c
Y Z  

. 5  

1.4 
-f

.4 

. 3  

.2 

.I 

Figure 2.- Correlation curves of shock-standoff 
distance at sonic point, A,/y,. 
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The results of equation (2) for 
sin @* are presented in figure 3 
normalized with respect to the value 
for a sphere (sin O*’) .  This nor
malized value is plotted as a func
tion of the more tangible variable, 
a/b = Bill2, rather than as a 
function of %. 

Although the absolute value for 
sin @*given by equation (2) may 
not be correct for a finite density 
ratio, it is assumed that the ratio 
sin @*/sin O++’ will not differ 
greatly from that given by exact 
theory.’ Thus, if the value of 
sin OXl is known for a sphere in a 
given free stream, the value of 
sin @* for an ellipsoid can be 
determined from the curve of fig
ure 3. Values of @*’, for a sphere 
at various free-stream conditions 
(ref. 1) are presented in figure 4 
for convenience in such 
calculations. 

If a blunt body does not have 

a conic section, the parameter Bb 

is not appropriate. However, the 


- .. 

’The validity of figure 3 for 

finite shock-density ratios is sub

stantiated to some degree by the 

points from reference 1 for ellip

soids of moderate values of a/b. 




“Equivalent 

Sketch ( b )  

sonic-point location on other types 
I O  of blunt bodies may be estimated on 

the basis of the foregoing analysis. 
rnd 201 To this end, it is assumed that a 

a / shock in the form of a conic section 
is appropriate to all classes of 
blunt bodies considered here. For 
example, a blunt body with a rounded 

6 corner of radius re is illustrated 

sin@.

G a q  	 in sketch (b). When the flow has an 

infinite shock-density ratio (p,/p,), 
.4 	 the shock approaches coincidence 

with the body in the vicinity of the 
sonic point. If the sonic point is 

2 	 on the rounded corner of the body, 
the above Busemann solution applies 
if the body corner radius re is 
equated to the radius Rb* of a 

0 
a 

6 I O  conic-section body at the same sonic 
-
b point ordinate, y*. 

Figure 3 . - Sonic angle,  O+, on e l l i p s o i d s .  

45 r o r  
: I  4 

L 
/ 
/ 

/ I O  

Equation (3) gives the rc/rm 

@ * , I  

deg 40 /
/ 

value for an equivalent body that 
supports the same elliptical shock 

/
/ and the same sonic angle as a body 

I

350 . I O  . 20  .30 L ‘m 

PI/P2 
“Equivalent 

b o d y  
Figure 4.- Sonic ang le  fo r  a sphere 

(E+, = 1, a/b = 1). 1 
Sketch ( b )  
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with the  b luntness  parameter, Bb. The r e l a t i o n s h i p  between Bb and @*was 
previously der ived and i s  given by equation (2) .  The value of  s i n  4p, nor
malized with r e spec t  t o  the  value for a sphere i s  p l o t t e d  i n  f i g u r e  5 as a 
funct ion of rc/rm as determined from equat ion (3 ) .  The genera l  v a l i d i t y  of 
t h i s  funct ion a t  f i n i t e  shock-density r a t i o s  w i l l  be discussed i n  a l a t e r  
seetion. 

Figure 5 i s  intended t o  apply 
t o  any blunted body with a rounded 
corner.  I n  many cases,  however, a 
q u a l i f i c a t i o n  of t he  sonic  angle  i s  
necessary,  f o r  example when the  body 
i s  con ica l ly  or s p h e r i c a l l y  blunted. 
The con ica l  or sphe r i ca l  po r t ion  of 
t he  body w i l l  be tangent  t o  t h e  cor 
ner  radius ,  re, a t  which po in t  a 
su r face  i n c l i n a t i o n  angle, E, i s  
def ined  with r e s p e c t  t o  a plane nor
mal t o  the  body axis of symmetry. 
The sonic  angle  i s  then taken a s  E 

i f  E i s  g r e a t e r  than @* 
determined from f i g u r e  5. 

6 I O  Rela t ionship  between shock and 
'C- body i n c l i n a t i o n .  - Reference 2 shows 
'm t h a t  i n  a given f r e e  s t ream the  

F igure  5.- Sonic angle, a,+, on round-cornered shock angle, e,, opposi te  t h e  sonic  
bodies. po in t  on the  body i s  uniquely 

r e l a t e d  t o  the  sonic  poin t  angle, 
@*. The o r i e n t a t i o n  of these  angles  
i s  shown i n  ske tch  ( e ) .  The r e s u l t s  
of re ference  2 a r e  r e s t r i c t e d  t o  
sharp-cornered bodies and a r e  based 
on a gross  mass-flow con t inu i ty  
ana lys i s .  It i s  never the less  
assumed t h a t  such a unique angle  
correspondence does e x i s t  and holds  
f o r  a l l  bodies with a detached shock. 
If this assumption i s  va l id ,  t he  
func t iona l  r e l a t i o n s h i p  between 0,

Sketch ( c )  and Q++ can be es tab l i shed  from any 
se t  of shock so lu t ions .  The so lu t ions  of re ference  1 f o r  conic-sect ion bodies 
were used f o r  t h i s  purpose i n  the  following manner: The value of y*/Rs w a s  
found by solving equation ( 4 )  (appendix B ) ;  values  of Et,, Bs, Rs/Rb, and 
Ao/Rs were obtained from reference  1 and the  value A,/y, from f i g u r e  2: 
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With the value of y,/Rs determined, the following equations were then solved 
for 0, and Q,: 

-y* 
tan 8, = RS ( 5 )  

tan Q* = RsRb 

"he above procedure, giving the relationship between 8, and @,, was 
restricted to the limited range of body bluntness (Bb < 3) (as found in 
ref. 1) and, therefore, to a limited range of 0,. Additional procedures were 
necessary to determine the value of 8 ,  at smaller values of 0, associated 
with bodies of larger bluntness. A simple solution for 8,  in the limiting 
case of a flat disk (% = m, 0, = 0') was found (appendix C). The relation
ship between e,  and 0, over the range of Q, not amenable to available 
theory was then approximated in the following manner. 

It was assumed that if the corner of a flat disk was rounded to a small 
radius, no important change in the shock shape would occur.2 For the sonic 
point on the rounded corner the inclination 0, could be significantly dif
ferent from zero. In the limit of a vanishingly small corner radius, no 
change occurs in the shock and, therefore, de, = 0. It then follows that 
de,/d0, = 0 at Q, = Oo, suggesting that 8, would develop in an even power 
series in 0,. Accordingly, a three-term power series in Q* was used to 
approximate the variation in 8, from its value at Q* = Oo to the values of 
8,  (and d@,/dQ*) in the range of 0, determined f rom the results of 
reference 1. 

2The small variation in shock shape with changes in body shape is 

pointed out in reference 1. 
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(a) e+ as a function of o*. 
Figure 6.- Inclination angles e+ and O*. 

Plots of 8, as a function of 0, are presented in figure 6(a) for 
various shock-density ratios and y values of 1.4 and 1.0. A useful corre
lation between the results for the values of y is presented in figure 6(b). 
The ordinate represents the incremental value or change in 8, (defined as 
8, - as a function of 0,. At a given shock-density ratio, this 
incremental change in 8, is independent of y. 

These relationships between 8, and 0, do not completely agree with 
those of reference 2, primarily because of the restrictions imposed on the 
shock shape in the earlier work. 

The manner in which the 8, - 0, functions are applied in determining 
shock solutions for the classes of bodies considered here will be discussed 
in the following sections. 

10 




07'1 4 
O y = l O  

cddl 


L 50 

(b) ( e ,  - es0)  as a func t ion  of 0,. 

Figure 6 .  - Concluded. 
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Shock Envelope Solu t ions  

Shock s o l u t i o n s  w i l l  be considered for the  fol lowing c l a s s e s  of bodies: 
e l l i p s o i d s  ranging from a sphere t o  a f l a t  d isk ,  s p h e r i c a l  or f l a t - f a c e d  
bodies with an  a r b i t r a r y  degree of corner  rounding, and s p h e r i c a l l y  blunted, 
large-apex-angle cones. Equations r e l a t i n g  t h e  shock shape with the  geometry 
of these  bodies  w i l l  be given. The use of a nomograph which s i m p l i f i e s  the  
so lu t ion  of  these  equat ions w i l l  be discussed.  

Shock equat ions f o r  conic-sect ion body.- A conic-sec t ion  body of known 
bluntness ,  Bb, and a shock bluntness ,  Bs, a t  a d i s t ance ,  4, from the  body a r e  
depicted i n  sketch ( d ) .  The geometrical  r e l a t i o n s h i p s  a re :  

"y Rb t a n  0, 
Y* = 

J1 + % tan2 @* 

Sketch (d) 

Equation ( 7 c )  i s  divided by equation (7a)  and the  r e s u l t  i s  rearranged t o  g ive  

y* Bb t a n  0 

o r  
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Non-conic-sectionbody shock equations.- A section of a body whose 

geometry3 involves all the elements of the non-conic-sectionbodies to be 

considered is shown in sketch (e). The geometrical relationships are: 


Y* = 

Xb = 

xs+n* = 

Sketch ( e )  

Equation (9c) is divided by equation (9a) and the result is rearranged to give 


rm tan E + Rb E - 1 - sin E 
no - A* cos E 1) + re ( cos E- _ - -

or 


Rb (cos E - 1) + - (I - sin E - costan E + 	rm COS E rm COS E 

1 re (1 - sin o*)
Rs - rm- _  

Shock solution nomograph.- The equation of a shock, with the ordinate set 

equal to y*, is 


'An important additional restriction of the method applies to spherically 
blunted, large-angle cones: The cone angle (90" - E) must be sufficiently 
large to assure a detached shock even if the cone apex is sharp (Rb = 0). 



Since the body geometry is given, @, can be determined from figure 3 or 5 and 
the corresponding value for 8 can then be found from figure 6. Equa
tions (l), (8)(or (lo)), and T U )  can be solved simultaneously to yield the 
shock solution in terms of y*/Rs, Bs, and &/RS. This solution requires con
siderable computation. The computation can be minimized by use of a nomograph 
consisting of constant Bs and e, curves on an R,/y, versus xs/y, coordi
nate system. Such curves, calculated with equation (11)and plotted in 
figure 7 ,  are used as 

7 I- I - I-r 
E 

- .-

4 

R S-
y, 


3 

2 

I 

.I
0 
= 

.4 

Figure 7.- Shock-solution nomograph. 

The numerator of the bracketed term in e uation (8)or (10)contains 

elements of known value. If the value of Ao;k, were also known, equa

tion (8)or (10)could then be plotted as a straight line on the coordinate 
system. This straight line would have the ordinate value equal to the 
bracketed term at xs/y, = 0 and would have a slope equal to Rs/Ao. The 
shock solution would then be given by the intersection of the line with the 
nomograph curve having the appropriate known value of 8,. This intersection 
point simultaneously locates the correct values for Bs and Rs/y,. The shock 
shape and its location with respect to the body are then completely defined. 
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In most cases, &/Rs is not known so the procedure described above can

not be applied directly. However, a quick convergence to a solution is possi

ble through an iterative technique beginning with a gross initial assumption 

for the value of &/Rs. Details of this iterative technique will be 

clarified in the Numerical Examples section. 


Pressure Distribution 


The method for estimating the pressure distribution on blunt bodies 

involves finding the simplest pressure distribution curve that conforms to 

''end" conditions specified at the stagnation and sonic points on the body.

A suitable, easily determined curve was obtained through the use of the 

following coordinate system. 


Coordinate system.- In the natural coordinate system of pressure and 

location points on the body, pressure can be expressed as some power series 

in terms of distance from the point of maximum (stagnation) pressure on the 

body. Experiments indicate that for a flat disk the pressure gradient is 

infinite at the sonic point (sketch (f)). For such a case, an infinite power 


I
/ 

"+ 

0 s/s+ I 

Sketch ( f )  

series in terms of distance from the sonic 

point is required to define the pressure 

distribution. In the present analysis, 

only a limited number of derivatives could 

be specified for the pressure distribution 

so that a term-by-termevaluation of an 

unlimited power series was not possible. 

However, if a pressure distribution curve 

without inflections could be represented 

in a coordinate systemby a curve whose 

maximum gradient did not exceed a rela

tively small value, it would then be pos

sible to approximate such a curve with a 

simple expression of few terms. The coor

dinate system in sketch (f) was con

structed as follows: The origin of the 

coordinates was at s/s* = 0 and p/pst = 1. 
The axis of the independent variable, 
s t / s d ,  was directed from this origin to 
the point p/pst = p,/ps at s/s, = 1. 
Tine transformed coordinates are indicated 
by dashed lines. The transformed vari

ables are s t / s :  and z. The absolute value of the slope of the transformed 
pressure distribution curve, z = f(st/si), cannot exceed the finite value, 
mi = l/m;t, as indicated. At s l / s i  = 0 and 1, z = 0. 

The variation of z with s l / s i  was approximated by two curves having 
appropriate slopes at s t / s J :  = 0 and sl/sJ: = 1, respectively, and which were 
matched to a comnon tangent. The evaluation of these slopes, the resulting 
transformed pressure distribution functions, and the method of matching these 
functions to a common tangent are described in the following paragraphs. 



Stagnation point.- The relationship between pressure and velocity for a 

perfect gas is 


Y 

which, for small velocities, V, near the stagnation point, can be written as 


The velocity variation with distance, s, is linear near the stagnation point 

so that equation (12)may be written, in natural coordinates, as 


The bracketed term in equation (1.3) is discussed in detail in appendix D. The 
transformed function, z, in equation (14)is obtained from the Taylor series 
expansion in the neighborhood of the stagnation point where the second deriva
tive is obtained from the radius of curvature found from equation (13):  

Equation (14)is assumed to give a close approximation to the value of z 
over a range of s f / s i  to a matching point value that remains to be 
determined and depends upon the slope of z at the sonic point. 

Sonic point.- Experimental pressure distribution data for flat-faced, 

round-cornered bodies indicate that the slope of the pressure distribution 

curve was inversely proportional to the radius of the body at the point where 

the pressure attained sonic value. The slope or derivative of the pressure 

distribution curve at the sonic point can be estimated quantitatively on the 

basis of an approximate theory discussed in appendix D. The result in natural 

coordinates is 


= -  (1-5) 

re
($1 

The slope of z at sf/s; = 1 (sonic point) is 
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i n  transformed coordinates .  

Matching of  curves.- Equation (14)  i s  assumed t o  be v a l i d  over a range 
of s'/sJ from ze ro  t o  si/":. A t  s{/s' the curve de f ined  by equation (14)  
i s  tangent  t o  a second curve v a l i d  over tge range . ; / s i  < st/.: < 1. The 
equation of t h e  second curve i s  assumed t o  have t h e  same form as equation (14): 

T h e  independent v a r i a b l e  1 - (st/.:) i s  m e d  f o r  convenience. 

Equations (14)  and (17)are equated a t  s , ! / s i .  The d e r i v a t i v e  of equa
t i o n  (14)  with r e s p e c t  t o  s ' / s i  i s  equated t o  t ha t  of equation (17). Two 
independent equations a r e  then made a v a i l a b l e  t o  solve f o r  t he  constant  C i n  
equation (17)and the  p o i n t  of tangency, s{/s: .  The r e s u l t s  a r e  

st - m i  - mAt - _  
s l  m l  + mAt - 2A 

where A i s  the abso lu te  value of t h e  c o e f f i c i e n t  of  ( S ' / S ; ) ~  i n  
equation ( 1 4 )  and 

mAt + m; - 2A si 
c =  s* 

2(1-3 


The curves given by equat ions (14)  and (1.7)a r e  p l o t t e d  over t h e i r  
r e s p e c t i v e  ranges of a p p l i c a b i l i t y  i n  the Z - (s'/s;) coordinate  system. To 
transform the  r e s u l t s  i n t o  the n a t u r a l  coordinate system, p/pSt versus s/s,, 
it  i s  only necessary t o  superpose the  n a t u r a l  coordinates  onto t h e  
z - (s'/s') curves. This i s  au tomat i ca l ly  accomplished wi th  double coordi
n a t e  paper ( f i g .  10). 

The above procedure cannot p r e d i c t  pressure d i s t r i b u t i o n s  i f  i n f l e c t i o n s  
i n  p re s su re  occur. Such condi t ions can occur f o r  a l a rge -ang le  cone with the  
apex blunted by a s m a l l  radius ,  R . However, t h i s  case i s  excluded and the  
method i s  app l i cab le  whenever s{?s; > 0 (eq. (18a)). 
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NUMERICAL E W L E S  

Shock Solutions 


The following numerical examples illustrate how the shape of the bow 

shock and its proximity to the body are determined for typical vehicles from 

each of the classes considered. 


~ _ _Example A. Ellipsoid: a/b = 0.25, y = 1.4, M = 10 

At M = 10, the normal shock-density ratio for air is p /pl = 5.71 o r  
p1/p2 = 0.175 thus G = 0.116 (fig. l), A++/y*= 0.325 (fig. 27, 
sin 0 /sin 0*1 = 0.825 (fig. 3; a/b = O.25), 40.4' (fig. 4), and 
Bb = rb/a)2 = 16 (by definition). 

The values of Q, and 0 ,  are @++ = sin-l(0.825 sin 40.4') = 32.3' and, 
e ,  = 23.8' (fig. 6(a)f. 

Equation (8)now reduces to 


-
+ -y*

n4 
y* L 1 RS 

AS 


The value of Ao/Rs is not known and cannot be determined with equation (lb) 
since the value of Rs/Rb is not known. If Ao/Rs is approximated by 
Ao/Rs F;: G = 0.116,the equation for Rs/y, becomes 

R~ - U5.5 + 1% x= 1.336 + 8.621 -2 
- _
Y* 0.116 0.116 Y* y* 


The above equation is now plotted on the coordinates of figure 8(a). The 
equation is a straight line with the ordinate RS/y* = 1.336 at xs/y, = 0 and 
has a slope of 8.621. This line intersects the curve, 0, = 23.8O, at 
RS/y* = 2.98. 

A trial value for Rs/Rb may now be determined from equation 7(a): 
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y, 

( a )  Ellipsoid. 

Figure 8.- Numerical a p p l i c a t i o n  of nomograph. 

y ,= 0.632 = 0.232 
Rb 41 +~16(0.632)~ 

and 


Rs - Rs 
- 2.98x 0.232 = 0.691 

Rb y* Rb 

The value of Ao/Rs, from equation ( l b ) ,  is 

no = 41 + 4(0.116)(0.691) - 1 = 0.108-

RS 2(0.691) 

which is used to reevaluate Rs/y*: 

XRs - 0.155 + xs - 1.435 + 9.259 2 
y++ 0.108 0.108 y++ Y* 

and is found to give the value Rs/y* = 3.15 ( f i g .  8(a)) as the second trial 
solution. New values of and Ao/Rs are calculated: 



- -  

and 


No change in Ao/Rs has occurred so convergence to a solution has been 
achieved. The value for Bs is determined by the intersection point of the 
final equation for Rs/y, with the curve, e = 23.8' (fig. 8(a) ) . The final 
results are: 

Bs = 4.8 

n, - 0.108 
RS 

and 
a0= 0.079 

Rb 


Example B. Flat-faced body with rounded corner: rc/rm = 0.25, y = 1.4, 
M =  5 

At M = 5, the normal shock-density ratio Tor air is p2/p1 = 5.00 or 
p1/p2 = 0.200; thus G = 0.132 (fig. l), &/y, = 0.372 (fig. 2) ,  

sin @,/sin @,l = 0.71.2 (fig. 5), and @,l = 41.1' (fig. 4). The values E = 0' 

and Rb = 03 are appropriate to a flat-faced body. 


The values of 0 and 8, are 0, = sin-'( 0.712 sin 41.lo) = 27.9' and 
8, = 21.8' (fig. 6(ai7.  

Equation (10)is now evaluated. (Note that since Rb = a, equation (1) 
gives A~/R,= G = 0.132. ) 

0.0 + 0.0 + 0.250(1 - 0.884) xS0.372 -- _.______ .- 
s=- 1 - 0.250(1 - 0.468)R __ _.. . _.____+ - y* 
y* 0.132 0.132 

The line represented by the above equation has the RS/y* ordinate value 
of 2.568 at xs/y, = 0 and a slope of 7.576. This line intersects the curve, 

= 21.8', in figure 8(b)  at R /y, = 3.77 and also gives Bs x 8.0. No 
Yxeration is necessary since R,gRb = 0 remains fixed. The shock centerline 
radius and standoff distance may be related to the body radius, r,, with 
equation 9( a): 

20 



( b )  F l a t  faced body. 

Figure  8. - Continued. 

y*-= 1 - 0.250(1 - 0.468) = 0.867 
rm 

then 

and 

The f i n a l  r e s u l t s  are Bs = 8.0, R s / r m  = 3.27, and Ao/rm = 0.432. 

Example C.  Sphe r i ca l ly  blunted 65' cone with rounded corner:  
Rb/rm = 0.167, rc/rm= 0.083, y = 1.4, M-= 5.2 

A t  M = 5.2, t he  normal shock-density r a t i o  of a i r  i s  p2/p1 = 5.064 or 
p,/p, = 0.1975; thus G = 0.1305 ( f i g .  l), A,/y, = 0.368 ( f i g .  2 ) ,  
s i n  @,/sin @,l=0.500 ( f i g .  5 ) ,  and = 41.05 ( f i g .  4 ) .  The value 
E = goo - 6 5 O  = 25'. 

The angle  @, = sin"(0.500 s i n  41.05') = 19.2'. However, t h i s  value 
f o r  @* i s  smaller  than E = 25O, t he  angle  of tangency between the  corner 
radius and t h e  conica l  surface.  Therefore, t he  sonic  p o i n t  i s  taken a t  the  
poin t  of tangency: 
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and 


e, = 21.4' ( f i g .  6 ( a ) )  

Equation (10) reduces t o  

0.466 + 0.167 ( o.90i 
0.368 

0.906 l) + 0.083 0.g)y3 - 0.906) xS 

_ _  __ 

The value of Ao/Rs, as i n  example A, i s  no t  known. If Ao/Rs i s  
approximated by G = 0.1305 

R~ -0.080 + 1 xs xS- _  -
Y* 0.1305 0.1305 Y* 

-= -0.613 + 7.663 
y* 

I n  t h i s  case, t h e  l i n e  r ep resen t ing  equat ion (10) c ros ses  t h e  absc i s sa  
axis of f i g u r e  8(c)  a t  xs/y, = 0.080 (independent of t h e  value f o r  Ao/Rs) 

4 

-3 

0 Solullon 

R s
- 2
Y *  

I 

0 
A 

I 2 3 

(c) Spherically blunted cone. 

Figure 8.- Continued. 
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and has a slope of 7.663. The intersection of this line with the curve 

8, = 21.4' gives Rs/y* = 1.34. 

A trial value for Rs/Rb may now be determined. Equation (9a) gives 


% =  1 - 0.083(1 - 0.423) = 0.9519rm 

and 


R,=- -Rs y* r, = 1.34 0'9519 = 1.34 x 5.710 = 7.651
Rb y* rm Rb 0.167 

The value of Ao/Rs, determined with equation (lb) using the above value 

for Rs/Rb, is 


Equation (lo), reevaluated with the new value for .Ao/Rs, is 


-R Xs=-0.080+ Y, 
= -0.991+ 12.3915

Y* 0.0807 0.0807 y* 


The intersection of the above line with the curve 8, = 21.4' in 
figure 8 ( c )  gives RS/y* = 1.83. The adjusted values for Rs/Rb and Ao/Rs 
are 


U 

then 

xS
-

X - _Rs - -0.080+ '* = -1.085+ 13.569 2 
Y* 0.0737 0.0737 y* 

The intersection of the above adjusted line with the 8, = 21.4' curve 
now gives Rs/y, = 1.95. Another iteration is performed for Rs/Rb and Ao/Rs: 
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Xn 

and 


Equation (10)is again adjusted to give 


I -
-
RS = -0.080 + '* = -1.108 + 13.850 
xS 

Y, 0.0722 0.0722 y* 


The value Rs/y, = 1.9 is now determined from figure 8 ( c ) .  No large 
change in Rs/y, has occurred, indicating that convergence to a solution has 
been essentially accomplished. The value Bs = -2.5 is also determined from 
figure 8(c). 

The final results are: 


R

-5 = 1.97 x 5.710 = 11.249 

Rb 


% = 5 ?k= 0.0721 x 1.9 x 0.9519 = 0.135 

rm Rs Y++rm 


Example D. Spherical-faced body with rounded .__ corner: Rb/rm = 2.4, 
rC/rm = 0.10, equilibrium flow with p2/p1 = 20 

The air is assumed to behave as a perfect gas, and since the Mach number 
is large, the asymptotic value, y = [(p,/p,) + l]/[(p,/p,) - 11 = 21/19 = 1.105, 
characterizes the thermodynamic properties of the air. 

Since no body shock parameter charts are given here for gases with y 
other than 1.0 and 1.4, interpolations are necessary. 

The value G = 0.037 is found from figure 1 at p1/p2 = 1/20 = 0.05. 
(The effect of y on G is negligible at small values of p,/p2.) The values 
A,/y* = 0.117 is found from figure 2 by linear interpolation between the 
curves for y = 1.0 and y = 1.4 at p1/p2 = 0.05. The value 
sin O*/sin @'.xl= 0.53 is found from figure 5 at rC/rm = 0.10. The value for 
@*, is found from figure 4. Note that there is no great difference between 
the values of @,, for gases with y of 1.0 or 1.4 at the same shock-density 
ratio. The difference in between gases with y = 1.1 and 1.0 should be 
negligible, particularly at small values of p1/p2. Accordingly, the value 

= 36.8O found from figure 4 at p1/p2 = 0.05 and y = 1.0 is assumed valid 
for y = 1.105. 
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The value of E for a spherically blunted vehicle of radius Rb, tangent 
to a round corner of radius rc, is given by 

The value 0, = sin-l(0.53 sin 36.8') = 18.4'. Since the angle E is 
larger than O,, E is taken as the sonic point inclination angle; therefore, 
E = B, = 23O. 

The value e, - e,o = 4.2' is found from figure 6(b) (p2/p1 = 20 and 
= y .  The value of0, 23'). The curves of figure 6(b) are independent of 

@*to, given by equation (Ck),is 

The value of 8, is found by addition, (6, 

Equation (10)is now evaluated: 


0.424 + 2.4 (0*920- ')+0.920 

1 - O.lO(1 

aO-
RS 

or 


- e++o)+ 6,, = 17.5' + 4.2' = 21.7'. 

- 0'391 0.10 0.920 
- 0.391) + -

If Ao/Rs is approximated by G = 0.037, the equation for Rs/y', becomes 

In this case, as in example C, the line representing equation (10) 
crosses the xs/y, axis at xs/y, = 0.084,as is apparent above. The slope 
of the line is 27.03. The intersection of the line with the 8, = 21.7' curve 
in figure 8(d) gives the value Rs/y, = 2.82. 
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Î-

x. 
Y*  

(d) Spherical-faced body. 

Figure 8.- Concluded. 

Since the  sonic  po in t  i s  a t  the  tangent  po in t  of Rb and rcy 
y++= Rb s i n  E or y*/Rb = s i n  23O = 0.391. The value f o r  Rs/Rb i s  then 

Rs-= !k% = 2.82 x 0.391E 1.103 
Rb y++Rb 

The value of Ao/Rsy determined with equat ion ( l b ) ,  i s  

Equation (10) i s  reevaluated:  

-
’* xSRs - -0.084+ 

0.0356 = -2.359+ 28.09 -Y* 0.0356 y* 

A new value of Rs/y++ = 2.93 i s  found from f i g u r e  8(d). Since the  value 
of Rs/y, has not  changed grea t ly ,  convergence t o  a so lu t ion  has been 
e s s e n t i a l l y  achieved. The f i n a l  values a r e  

B, M 2 


R
2.= 2.93 x 0.391 = 1.146 
Rb 
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- -  no - 0.0356 
RS 

and 

5= = 0.0356 x 2.93 x 0.9391 = 0.098 
r m  Rs Y++ r m  

Pressure D i s t r i b u t i o n  

An example c a l c u l a t i o n  f o r  t h e  pressure d i s t r i b u t i o n  over t he  forward 
f a c e  of a b l u n t  body i s  presented i n  the  following paragraphs. Only one exam
p l e  i s  given s i n c e  the  c a l c u l a t i v e  procedure, with obvious minor va r i a t ions ,  
i s  app l i cab le  t o  most bodies f o r  which the  shock s o l u t i o n  has been determined. 

The method i s  not  app l i cab le  t o  c e r t a i n  cases of large-angle  cones with 
t h e  apex blunted by a s m a l l  radius ,  Rb. Cr i te r ia  f o r  a p p l i c a b i l i t y  of t he  
method a r e  given i n  the  Analysis s ec t ion .  

The example c a l c u l a t i o n  app l i e s  t o  the round-cornered, f l a t - f a c e d  body a t  
Mach number 5 f o r  which the  shock s o l u t i o n  was ca l cu la t ed  i n  f i g u r e  8 ( b ) .  The 
p e r t i n e n t  shock and body parameters a r e  rc/rm= 0.25, @*= 27.9', 
Ao/rm = 0.432, p1/p2 = 0.20, and y = 1 . 4 .  

F i r s t ,  t he  numerical values f o r  t he  c o e f f i c i e n t s  of s I/sJ and ( s I/S;)~ 

of equation (14)  a r e  determined. The values f o r  Gt, s,/Ao, Ao/Rb, and v 
a r e  required.  The quan t i ty  m f t  r ep resen t s  t he  s lope  of the l i n e  drawn from 
p/pSt = 1 t o  p*/pst as ind ica t ed  i n  sketch ( f ) .  I n  the  p re sen t  example, t h e  
gas is a i r  for which p/pst = 0.528; and 

= 1 - - - - 1 - 0.528 = 0.472s t  ps t 

The length,  s*, extends from the  s t agna t ion  p o i n t  a t  t he  vehicle  cen te r -
l i n e  t o  the sonic p o i n t  a t  l o c a t i o n  @*on t h e  rounded corner of r ad ius  re. 
For t h e  p re sen t  example, s* has t h e  value 

which, expressed i n  terms of A,, i s  

o r  



- -  - -  s* ' (1 - 0.25) + 27'90 0.25 -1 = 2.018n, 0.432 57.3O 0.432 

The value for &/Rb is 0 since Rb = ~0 for a flat face. The value 
v = 0.150 is found from figure 9 at p,/p, = 0.20 and y = 1.4. 

.20 .30 .50 

Figure 9.- The v function. 

Equation (14), written w i t h  numerical coefficients, is 

z = 0.472$ - (1+ 0.4722)3/2[0.150x 2.018(1 + o.o)I2 (qr
SSC s* 

or 
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S 'z = 0.472 - - 0.126 
s,: 

Next, the numerical values of the coefficients of 1 - s l / s j :  and 
[l - (s1/s:)l2 of equation (17)are determined. The values for s*/rC, mi, 
st/s$, and C are required. 

'++ - rm 4 S* - ' 0.432 x 2.018 = 3.487 
re re rm no 0.25 

Equation (16)is then evaluated for mi 


= tan (64.7' - 16.0') = 1.144 

The value of A required to calculate the value of the coefficient C 
has already been determined and is the coefficient of ( s ' / s ; ) ~in the equa
tion for z, that is, A = 0.126. The value of the tangent point location 
s;/sd is also required to evaluate C. Its value (given by eq. (18a)) is 

- _  - 1.144 - 0.472 
= 0.4927 

S: 1.144 + 0.472 - 2 x 0.126 

The coefficient C (given by eq. (18b)) may now be evaluated: 


0.472 + 1.144 - 2 x 0.126 x 0.4927 = l.471c =  
2(1 - 0.4927) 

Equation (l7),written with numerical coefficients, is 


Values for z in the range 0 < s 1 / s 2  < 0.4927 computed with 
equation (14)are 



s ys; Z 

0.0 0.0 

0.1 0.0459 

0.2 0.0894 

0.3 0.1303 
0.4 0.1686 
0.4927 0.2019 

Values f o r  z in the range 0.4927 < s l/s; < 1.0 computed with 
equation (17)are 

s ! / s i  Z 

0.4927 0.2019 

0.6 0.2222 

0.7 0.2108 

0.8 0.1697 

0.9 0.0996 

1.0 0.0 


The above sets of values are shown plotted on the Z - ( s ' / s : )  coordi
nates of figure 10. The resulting curve represents the pressure distribution 
on the superposed (p/pSt) - ( s / s * )  coordinates. 

I O  

6 

5 

Figure 10.-The Z - (sl/s$) coordinate system with an example pressure-distribution solution. 



COMPARISON OF EXPF,RIMENTAL AND PREDICTED RESULTS 

The validity of the method was assessed on the basis of the experimental 

results of references 3, 4, 6, 7, and 8. These data are not extensive but do 

include representative cases among the classes of body shapes considered in 

the previous sections. 


Shock Shape 


A comparison of predicted and experimental shock traces for various types 

of blunt bodies is shown in figure 11. 


c / r m  = .05 rJrm = .I 5 

M = 10.53 M :10.53 

Approx~mate 
so lut ion,  

:' circular 
5hock 

Ref.  6 :f. 6 Ref. 

Exact 

E5 = 2.3 	 Experiment 0 

Present  method 
-

Figure 11.- Comparison of experimental and predicted shock shapes. 




p/ps I 

7-r 
r, = . I5 B 

The geometric parameters of each body are indicated along with the blunt

ness, Bs, of the associated shock and the Mach number of the free stream. 

Good agreement between experimental and predicted shock shapes is shown. 


In all cases, the shock traces appear circular. However, the shock 
bluntness, Bs, has a significant effect on the centerline shock standoff dis
tance. To illustrate this effect, an element of a circular shock is shown on. 
the body axis of symmetry for the cases, rc/rm = 0.5 and M = 10.53, and for 
the conical body (example C ) ,  M = 5.2. The circular shock satisfies the value, 
A,/y,, appropriate to the free-stream flow and the value, O*, appropriate to 
the body geometry. An appreciable error is evident in the shock standoff dis
tance at the centerline for the circular shock. This error would increase at 
larger values for the normal shock-density ratio. 

m 
M = 10.43 M :10.43 -

Ref. 6 Ref. 6 

1 7-r 

p/ps I r,= . I5 

M = 10.43 
PB


Ref. 6 

M = 5.46 -
Ref. 8 

.4 .6 
s/s, s/s, 

Figure 12.- Comparison of experimental and predicted pressure distributions. 
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The good agreement between predicted and experimental shock shapes veri
fies the correlation curve of &/y, (fig. 2) and the value, CD,, determined 
from figure 5. The good agreement also confirms the relationship between 0, 
and 0, (fig. 6) since the value of Bs, which strongly influences the center-
line shock standoff distance, is sensitive to the correct value for e++. 

Pressure Distribution 


Predicted and experimental pressure distributions over the forward face 
of various blunt bodies are compared in figure 12. The results of the present 
method and the theoretical results of reference 1 for the sphere at M = co 
are also cowared. 

Agreement between the predicted and experimental results is usually 
within the scatter of the experimental values. The predicted values are 
somewhat higher than the experimental values for the sharp-cornered, flat-
faced cylinder at M = 3.55. Values predicted by the method of reference 3, 
which is applicable for the two sharp-cornered vehicles shown, are also indi
cated in figure 12; those predicted by the present method are in better accord 
with experiment. 

CONCLUDING REMARKS 

A method was developed for predicting shock envelopes and pressure dis

tributions for a variety of blunt bodies at zero angle of attack. The method 

is restricted to those cases in which the bow shock is detached from the body 

and the flow over the forward face of the body is subsonic. 


The method is based on correlation functions which relate the shock 

standoff distances at the stagnation and sonic points to the body geometry. 

These correlation functions were developed from the perfect gas solutions of 

reference 1 and depend primarily on the normal-shock density ratio modified 

to a small degree by the specific heat ratio of the gas. Since the effect of 

the specific-heat ratio is small, the present method should give adequate 

solutions for the equilibrium flows of real gases. 


Predicted shock envelopes and pressure distributions were compared with 

experimental values for air flows in the Mach number range of 3.55 to 10.53 

for a variety of body shapes. Satisfactory agreement between predicted and 

experimental values was found for both shock shapes and pressure distributions. 


Ames Research Center 

National Aeronautics and Space Administration 


Moffett Field, Calif., 94035, Nov. 13, 1967 

129-01-08-01-00-21 
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APPENDIX A 


SONIC LOCATION ON ELLIPSOIDS 


The sonic location on ellipsoids is found by the Busemann solution for 

infinite shock-density ratio. 


The shock-body geometry in the vicin
ity of the sonic point of an ellipsoid is 
shown in sketch (g). The shock-layer 
thickness, 0 ,  is measured normal to the 
body or in the direction inclined at the 
angle, @++, with respect to the free-stream 
direction. The curve of radius, R, repre
sents the streamline passing through the 
shock at a distance y from the axis of 
symetry, at which point the shock incli
nation is 0 .  The Busemann assumptions 
are made that the momentum tangent to the 
shock is preserved along streamlines 
within the shock layer, and that the veloc

. . ity also remains constant along a stream-
Sketch ( g )  line as indicated. In the limit of a van

ishingly thin shock layer, the velocity 
is V, sin 8 = V1 sin @ and the stream radius, R, becomes equal to the local 
body radius, Rb*, at the sonic point. 


A mass-flow continuity equation involving the differential annular flow 

tubes at the shock and within the shock layer, relating dv and y, is written 


or 


The values of y and @ for an ellipsoid are related by 

Equation (A2) is differentiated with respect to cf, with the result 
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The v a r i a b l e  y i s  el iminated from equation (Al)with equations (A2) and 
(A3) : 

The d i f f e r e n t i a l  pressure,  Ap, ac ross  t h e  shock l a y e r  a t  t h e  son ic  po in t  
(CP = CP*) i s  given by 

The radius ,  Rb*J of an e l l i p s e  a t  l o c a t i o n  CP* is  r e l a t e d  t o  t h e  c e n t e r l i n e  
radius ,  Rb, by t h e  i d e n t i t y  

The above i n t e g r a t i o n  w a s  performed and, with equat ion (A5), t h e  r e s u l t  
w a s  arranged t o  give the  following equat ion for t h e  d i f f e r e n t i a l  p re s su re  
ac ross  the  shock l a y e r  a t  t he  son ic  point :  

An independent equation g iv ing  t h i s  pressure d i f f e r e n t i a l  f o r  a gas with 
y = 1 a t  i n f i n i t e  Mach number i s  t h e  Newtonian r e s u l t  

Equations ( A 6 )  and ( A 7 )  a r e  equated t o  give 
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TT@ 0, - @*FUNCTION 

The relationship between 0* and @*was derived from the results from 
reference 1 for a sphere, along with the results found from the shock solu
tions of a series of increasingly (elliptically) blunted bodies. The solution 

for elliptically blunted bodies is developed in this section. 


Sketch (h) depicts a body that is elliptically 

blunted, Bb, up to at least the sonic point at y* 

- and its associated shock of bluntness B,. 

By inspection, 


A* = no+ xb - xS 

The values of xs and xb are related to y 

through the bluntness parameters, Bs and Bb, as 


Sketch (h) follows: 

xs (B2) 


and 


The values of xs and xb given by equations (B2) and (B3) are substituted 
into equation (Bl) and the result divided by Rs to give 

Equation (4) is then solved for y*/Rs. The angles 0, and @* are then found 
from the following equations, which are derivatives of equations (B2) and (B3), 
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APPENDIX C 

SHOCK BLUNTNESS B, AND ANGLE e,, FOR A DISK 

On a flat disk the centerline body radius Rb = 0 and equation (1)gives 

- G ( C l )
RS 

The equation of the shock is written in the form 


I where xs is the streamwise distance from the
y* 
shock apex to the location on the shock at the dis

tance A, in the free-stream direction from the 
corner of the disk, as indicated in sketch (i). 
The angle e,, is the shock inclination; the 

which is written in the form 


A solution to equation (C2c) is given if 


1
-
Bs - E 

and 


tan 0,, = 	-G 
00
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APPENDIX D 


PRESSURE DISTRIBUTION 

The pressure distribution at the stagnation and sonic point locations of 

a body are developed as follows. 


Stagnation Point 


In reference 2 it is shown that the stagnation point velocity gradient is 


ds A, 2 

The function, f, of reference 2 is related to the function G as follows: 


f=2PI[1-(?-1)G]
Pst 


Thus, 

ds = no"(.+ 2) [l - ($ - 1) G] 

If the velocity, V, is assumed to be linear with s in the vicinity of the 
stagnation point, equation (Dlc) may be integrated and normalized with respect 
to sonic ( ) *  values to yield 

The relationship between pressure and velocity of a perfect gas, written 

in a form valid for small velocities, is 


Equations (D2) and (10)are combined to give 




- -  

where 


The function v was determined for gases with y = 1.0 and 1.4 as a function 
of the normal shock-density ratio, p,/p, (fig. 10). 

Sonic Point 


Newtonian theory gives for pressure distribution, 


- cos2 a) 
pst 

The derivative of the pressure distribution with respect to 0 is 


(&)= -2 sin 0 COS 0 

The pressure gradient at the sonic point on a round corner of radius, rc, is 
found by eliminating 0 between equations (D4) and (D5): 

or, since, generally, 0.5 < p*/pst < 0.6, 

Although equation (15) was based on approximate theory, it generally agreed 
well with available experimental data. 
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